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• No evidence of a relationship between
COVID-19 cases and temperature was
found.

• Results should not be extrapolated to
other temperature ranges.

• These results should be interpreted
carefully due to data uncertainty and
confounders.

• It is important to account for non-
meteorological, spatial and temporal
effects.
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The new SARS-CoV-2 coronavirus, which causes the COVID-19 disease,was reported inWuhan, China, in Decem-
ber 2019. This new pathogen has spread rapidly around more than 200 countries, in which Spain has one of the
world's highest mortality rates so far. Previous studies have supported an epidemiological hypothesis that
weather conditionsmay affect the survival and spread of droplet-mediated viral diseases. However, some contra-
dictory studies have also been reported in the same research line. In addition, many of these studies have been
performed considering onlymeteorological factors,which can limit the reliability of the results. Herein,we report
a spatio-temporal analysis for exploring the effect of daily temperature (mean, minimum andmaximum) on the
accumulated number of COVID-19 cases in the provinces of Spain. Non-meteorological factors such as population
density, population by age, number of travellers and number of companies have also been considered for the
analysis. No evidence suggesting a reduction in COVID-19 cases at warmer mean, minimum andmaximum tem-
peratures has been found. Nevertheless, these results need to be interpreted cautiously given the existing uncer-
tainty about COVID-19 data, and should not be extrapolated to temperature ranges other than those analysed
here for the early evolution period.
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1. Introduction

History has demonstrated that pathogens may cause devastating
consequences in our health and economy. Thus, the rapid spread of
the new SARS-CoV-2 pathogen, causing the Coronavirus disease 2019
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(COVID-19) is a clear current example. In this regard, the Director-
General of theWorld Health Organization (WHO) has recently declared
COVID-19 a global pandemic on 11 March 2020 starting in Wuhan,
Hubei Province, China in December 2019 (WHO, 2020c). According to
the WHO, the current COVID-19 outbreak situation has confirmed
1,812,734 cases and 113,675 deaths involving 213 countries (WHO,
2020a) where Spain is one of the leading countries of this global health
crisis with 172,541 confirmed cases and 18,056 confirmed deaths
(ISCIII, 2020) (data reported on April 14th 2020) in a population of
about 47 million people. Nonetheless, experts are warning that there
could bemanymore cases that have not been detected and/or informed,
especially in undeveloped countries. This strain continues to spread
globally, overwhelming intensive care units and health system capacity.
The present outbreak of this coronavirus-associated acute respiratory
disease is the third documented spillover of an animal coronavirus to
humans in only two decades and has been identified as a zoonotic coro-
navirus, similar to SARS coronavirus and MERS (Liu et al., 2020). Thus,
SARS-CoV-2 is closely related (88–89% similarity) to two bat-derived
severe acute respiratory syndrome-like coronaviruses, bat-SL-
CoVZC45 and bat-SL-CoVZXC21 (Lai et al., 2020). However, it is more
distant from SARS-CoV (~79% similarity) and Middle East respiratory
syndrome coronavirus (MERS-CoV) (~50% similarity) (Jiang et al.,
2020; Lu et al., 2020; Ren et al., 2020). The SARS-CoV-2 coronavirus is
stable from several hours to days in aerosols and on surfaces, according
to a new study from the National Institute of Allergy and Infectious Dis-
eases, Centers for Disease Control and Prevention, UCLA and Princeton
University scientists (van Doremalen et al., 2020). These scientists
have found that SARS-CoV-2 was detectable in aerosols for up to 3 h,
up to 4 h on copper, up to 24 h on cardboard and up to two to three
days on plastic and stainless steel. These results provide key information
about the stability of this strain and suggest that peoplemay acquire the
virus through the air and after touching contaminated objects. Thus, this
pathogen is easily spread by human-to-human transmission via drop-
lets or direct contact, and this type of infection has shown a basic repro-
duction number of about 2.24–3.58 (Lai et al., 2020; Remuzzi and
Remuzzi, 2020). It is often spread via coughing, sneezing, touching or
even breathing, and thosewhodo not exhibit symptoms can also spread
the illness (American Lung Association, 2020). In fact, this coronavirus
has been reported to spread faster than its two ancestors SARS-CoV
and MERS-CoV (Vellingiri et al., 2020), probably due to the high trans-
mission rate produced by asymptomatic carriers (Bai et al., 2020;
Singhal, 2020). Standard recommendations to prevent infection spread
include regular hand washing and covering mouth and nose when
coughing and sneezing. It has also been recommended to avoid close
contact with anyone showing symptoms of respiratory illness such as
coughing and sneezing and keep a distance of 1–2 m from them
(WHO, 2020b).

The lockdown for the SARS-CoV-2 epidemic in Italy and Spain after
one month follow up has shown positive results in flattening the epi-
demic curve (Tobías, 2020). However, even though these unprece-
dented containment and mitigation policies implemented to limit the
spread of COVID-19 in most countries, including travel restrictions,
screening and testing of travellers, isolation and quarantine, and school
and university closures, the new SARS-CoV-2 coronavirus continues to
spread. Indeed, a recent study has demonstrated that under certain
combinations of an individual patient's physiology and environmental
conditions, such as humidity and temperature, the gas cloud and its
payload of pathogen-bearing droplets of all sizes can travel 7–8 m
(Bourouiba, 2020). Viruses can be transmitted by being influenced by
several factors, including climatic conditions (temperature and humid-
ity), and population density (Dalziel et al., 2018). In this regard, previous
studies have suggested a correlation between weather and COVID-19
pandemic in a similar way that it occurs with other viral infectious dis-
eases such as influenza (Ficetola and Rubolini, 2020; Liu et al., 2020;Ma
et al., 2020; Oliveiros et al., 2020; Tosepu et al., 2020). However, other
studies have reported contradictory results showing that
meteorological conditions may not be associated with COVID-19 in
terms of absolute humidity (Shi et al., 2020) or temperature (Jamil
et al., 2020; Xie and Zhu, 2020). According to these last authors, the pre-
vious results showing evidence for a correlation between meteorologi-
cal factors with COVID-19 transmission was likely to be an artifact,
reflecting the pathways of spread. In fact, several of these previous stud-
ies have been performed considering only meteorological factors, with-
out accounting for non-meteorological variables that might be more
decisive.

Spatio-temporal spread of COVID-19 has been recently reported
for China (Huang et al., 2020; Kang et al., 2020) and Italy (Giuliani
et al., 2020). In the present paper, we focus on the case of Spain.
Spain is located in a temperate zone of the world. However, it is the
most climatically diverse country in Europe and it is classified within
the 10 most climatically diverse countries in the world (Ministerio
de Medio Ambiente y Medio Rural y Marino. AEMET, 2011). Spain
is currently a country with the third-highest life expectancy of the
world (WHO, 2020b), which explains somehow the high impact
which is causing COVID-19 in this country, especially in old people
for whom this disease represents a major threat (Morley and
Vellas, 2020). In addition, according to the World Tourism Organiza-
tion, Spain was the country in the world with the second highest in-
ternational tourist arrivals in 2019 (UNWTO, 2019). The climate in
Spain varies across the entire country with five main climatic
zones: the hot-summer Mediterranean climate, which is dominant
on the Iberian Peninsula; the warm-summer Mediterranean climate
in parts of north-western Spain and mostly inland the central-
northern Spain; the oceanic climate in the northern part of Spain;
the semiarid climate in the south-eastern part of the country; the
warm-summer continental climate in many areas of the north-
eastern zones located over 1000 m above sea level (Kottek et al.,
2006).

In this study, a spatio-temporal analysis of the early evolution of
COVID-19 across the provinces of Spain is carried out. The main goal is
to explore the existence of a relationship between temperature at the
province level and the evolution of the accumulated number of
COVID-19 cases for approximately the first month of the epidemic in
Spain.
2. Data

2.1. Study area

The provinces of Spain located in the Iberian Peninsula have been
considered for the analysis. The Balearic and Canary islands were
discarded for the analysis in order to focus entirely on a more homoge-
neous area. For the same reason, the cities of Ceuta and Melilla, which
are located in the north of Africa, were also not included in the analysis.
2.2. COVID-19 data

COVID-19 data corresponding to the provinces of Spain was
downloaded froma repository publicly available and accessible through
this link: https://code.montera34.com:4443/numeroteca/covid19. This
repository is being maintained by multiple volunteers that are
extracting andhomogenising COVID-19data frommultipleweb sources
belonging to both official and private media.

February 25th 2020 has been chosen as the starting date for this
early evolution study because it was when the first COVID-19 cases
were identified in Spain. The study period spans from this date to
March 28th 2020, which corresponds to two weeks after Spain's lock-
down started. Hence, for each province belonging to the study area, a
time series of length 33 (days) with the number of daily accumulated
COVID-19 cases is formed.

https://code.montera34.com:4443/numeroteca/covid19


Table 1
Statistical summary of the meteorological covariates used for the analysis.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

Minimum temperature (°C) −3.19 3.13 5.57 5.39 7.69 13.51
Mean temperature (°C) 0.62 8.70 10.81 10.83 12.88 20.02
Maximum temperature (°C) 3.14 13.66 16.03 16.29 18.59 29.26
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2.3. Temperature data

Temperature data has been obtained from 172 automatic weather
stations installed across the study area. The data was downloaded
from the OpenData platform of the State Meteorological Agency
(AEMET) via the API provided by this institution. Concretely, the daily
mean, minimum and maximum temperatures (in °C) measured by
each of these weather stations from the beginning of February to the
end of March have been collected for the analysis.

Temperature data at the province level has been estimated in two
stages. First, ordinary kriging (Cressie, 1988) was used to estimate tem-
perature values over a spatial grid of points covering the whole area
under investigation. Points within the grid were separated by 5 km,
resulting in a total of nearly 20,000 points. Secondly, province-level
daily estimations for the variables of interest have been obtained as
the average of the estimations corresponding to points of the grid
lying within the province. Table 1 displays a summary of the three
Fig. 1. Minimum (a–c), mean (d–f) and maximum (g–i) temperatures estimated
temperature-related variables that have been investigated at the prov-
ince level. Fig. 1 shows the province-level estimations corresponding
to mean, minimum and maximum temperatures for three days within
the period under investigation.

Since this coronavirus has shown a mean incubation period of ap-
proximately 5 days (ranging from 2 to 14 days) (Nishiura et al., 2020;
Rasmussen et al., 2020), the effect of these temperature-related vari-
ables has been considered with a time delay of 2 to 14 days. Hence,
these temperature-related variables are referred to as temporally-
lagged variables in subsequent sections.

2.4. Non-meteorological data

In addition to the effect of temperature on the accumulated number
of COVID-19 cases, other covariates unrelated to meteorological condi-
tions available at the provincial level were also included in the analysis.
Population data by age group corresponding to the start of the year
2020 has been obtained from the Spanish Statistical Office (INE) at the
province level. The total population has been used to obtain the popula-
tion density (in hab/km2) for each province. The population by age
group has been utilised to estimate the expected number of COVID-19
cases in each province on March 28th 2020, according to the age distri-
bution of all the cases that had been recorded in Spain by this date. Fol-
lowing the official reports that are being published by the Ministry of
Health from Spain, the number of expected cases for province i (on
at the province level for three days within the period under investigation.



Table 2
Correlationmatrix for the non-meteorological covariates considered for the analysis at the
province-level.

Companies Population density Visitors

Companies 1.00 0.89 0.97
Population density 0.89 1.00 0.86
Visitors 0.97 0.86 1.00
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March 28th 2020), which is denoted by Ei, was estimated as follows
(Carella, 2020):

Ei ¼
X
j

f jPij ð1Þ

where Pij is the population of province i corresponding to age group j,
and fj is the incidence of cases in the age group j for the whole popu-
lation of the country. As COVID-19 affects the elderly population
more severely, the probability of testing and hence detecting
COVID-19 among people from certain age groups is higher. Hence,
accounting for the age structure of each province is convenient for
data modelling purposes.

Finally, the number of travellers that have stayed in each province
during February 2020 and the number of companies by province were
also obtained from the INE. The number of travellers was estimated by
the INE through survey procedures. In this analysis, a traveller is con-
sider someone that came from other province or country to spend at
least one night in the corresponding province during the month of ref-
erence. Thus, a higher number of travellers arriving at some provinces
in February 2020 could have increased the risk of the spread of
COVID-19 in subsequent weeks. Similarly, the fact that a province has
a higher number of active companies can induce intranational mobility
during working days.
Fig. 2.Accumulated number of COVID-19 cases observed (a–c) and accumulated number of case
days (d–f), for three days within the period under investigation.
3. Methodology

3.1. Software

The R programming language (R Core Team, 2020) has been used to
carry out the statistical analyses involved in the present investigation. In
particular, the R packages automap (Hiemstra et al., 2008), ggplot2
(Wickham, 2016), gstat (Pebesma, 2004; Gräler et al., 2016), INLA
(Rue et al., 2009; Lindgren and Rue, 2015), rgdal (Bivand et al., 2019),
spdep (Bivand et al., 2008) were required for the analysis.

3.2. Statistical modelling approach

The number of accumulated COVID-19 cases at the province level
has been investigated through spatio-temporal modelling techniques.
Specifically, the accumulated number of COVID-19 cases detected in
each province, i, on a day, t, from February 25th 2020 to March 28th
2020 has been assumed to follow a Poisson distribution with mean
Eiμit, where Ei represents the expected number of cases (on March
28th 2020, following Eq. (1)), and μit the relative risk for province i on
day t. Several fixed and random effects are considered tomodel the nat-
ural logarithm of the relative risk, which finally yields to the following
modelling structure used for the analysis:

Oit∼Po Eiμ itð Þ

log μ itð Þ ¼ α þ
X
k

βkX
k
i þ

X
j

p X j
it−Lag ;3

� �
þ si þ ui þ δt þ εt

ð2Þ

where Oit represents the accumulated number of cases recorded for
province i (i=1,...,47) on day t (t=1,...,33), Ei is the expected number
of cases for province i (log(Ei) is the offset term of the linear predictor),
α is the global intercept of themodel, βk thefixed effect that covariate Xik

defined at the province level has on μit, p( ⋅ ,3) represents a third-degree
polynomial that allows establishing a non-linear relationship between
s predicted by themodel described by Eq. (2) consideringmean temperature and Lag=14
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temporally-lagged covariates, Xit−Lag
j , and μit, si is a spatially-structured

effect for province i, ui is a spatially-unstructured effect for province i,
δt is a temporally-structured effect for day t and εt is a temporally-
unstructured effect for day t.

The statisticalmodel described in Eq. (2) has beenfitted using the In-
tegrated Nested Laplace Approximation (INLA) (Rue et al., 2009;
Lindgren and Rue, 2015) (which approximates Bayesian inference for
latent Gaussian models). This model has enabled us to consider several
fixed and random effects of a different nature. Non-meteorological
province-level covariates can be included as fixed effects, each of
whom is represented by a βk parameter. The temperature-related co-
variates are temporally-lagged for their inclusion in the model. This
specification allows establishing a direct relationship between relative
risks on the day t, μit's, and the values of temperature that were mea-
sured some days before (Lag days before), which correspond to themo-
ment at which some of the COVID-19 cases detected on the day t were
actually infected by the virus. Following the existing literature on the
Fig. 3. The solid line represents the third-degree polynomial that is defined by the three estim
following the statistical model described by Eq. (2), considering mean (a–b), minimum (c–d)
defined by the 2.5 and 97.5 percentiles of the posterior distributions associated to each of the
incubation time of COVID-19, the parameter Lag was varied from
Lag=2 to Lag=14 days. The use of a third-degree polynomial allows
the model to capture non-linear relationships between the covariate
and the number of accumulated COVID-19 cases.

The rest of the parameters appearing in Eq. (2) (si, ui, δt, εt) represent
pure spatial and temporal random effects. The inclusion of these effects
is rather convenient to account for unobserved spatial heterogeneity
(unavailable or non-measurable variables at the province level) or tem-
poral trends. The spatially-structured effect, si, follows the Besag's spa-
tial model (Besag et al., 1991). This effect accounts for the spatial
dependence between the provinces of Spain, which is measured
through a binary neighbourhood matrix that represents the contiguity
relationships between provinces (two provinces are defined as neigh-
bours if they share a common geographical border). The temporally-
structured effect δt is defined through a second-order random walk. Fi-
nally, the spatially-unstructured (ui) and the temporally-unstructured
effect (εt) were defined as two different independent and identically
ated coefficients (corresponding to first-, second- and third-order terms) that are found
and maximum temperatures (e–f). Dotted lines represent the two polynomials that are

coefficients of the polynomial.
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distributed Gaussian random effects to account for specific province-
level and daily-level variability that may be skipped by the two struc-
tured effects, si and δt.

4. Results

The model described by Eq. (2) allows for the inclusion of several
non-meteorological (population density, number of visitors and num-
ber of companies) and lagged meteorological covariates (mean, mini-
mum and maximum temperature) considered for this study.
Furthermore, the age structure of each province is accounted through
the offset term, Ei. However, some of these covariates are highly corre-
lated to each other, for which reason it is convenient to use them sepa-
rately, or to make a selection of them, to avoid multicollinearity issues.
Population density, the number of visitors and the number of compa-
nies all show a Pearson's correlation above 0.85 at the province level
(Table 2). Fitting three independent models with each of these covari-
ates alone yielded very similar results. Therefore, population density
was chosen for being the most common and accessible variable of the
three. Similarly, the three temperature-related covariates are also
highly correlated, which led us to define three different models each
of whom only included one of them. The rest of the random effects indi-
cated in Eq. (2) were considered for the three models. Fig. 2 shows the
accumulated number of COVID-19 cases observed for three days within
the period under study, and the accumulated number of cases predicted
by the model that considers mean temperature and Lag=14 days. The
model correctly captures the evolution of the epidemic across the prov-
inces of Spain.

Fig. 3 shows the third-degree polynomials that were estimated by
each of the three models, considering Lag=7 and Lag=14 days. The re-
sults for other Lag values are very similar, so only these two are
displayed. The range of temperatures displayed in each of the six plots
provided in Fig. 3 covers the 95% of the mean, minimum or maximum
temperatures available in the dataset. The solid curves in each of them
correspond to the polynomial that can be built according to the coeffi-
cients of the first-, second- and third-degree terms that are estimated
by the model in each case. The dotted lines correspond to the polyno-
mials that are defined by the 2.5 and 97.5 percentiles of the posterior
distributions of these three coefficients. No trend is observed neither
with increasing mean, minimum nor maximum temperature. Specifi-
cally, the fact that the dotted lines do not lie consistently within the
upper (or lower) half-plane indicates that there is no clear evidence of
a contribution to relative risks by any range of the temperature-
related variables.

5. Discussion and conclusions

The analysis of how certain meteorological conditions may have
affected the initial spread of COVID-19 at the country, city or regional
level has become an important line of research in recent weeks. In
many of these studies, non-meteorological factors have not been in-
cluded in the analysis. We highlight the need for considering non-
meteorological factors, such as population density, to get more reliable
results. In addition, we have also accounted for the age structure of
each region under study, which seems very convenient because of the
existing age-group differences in detection rates.

In this study, no consistent evidence has been found regarding the
existence of a relationship between the accumulated number of
COVID-19 cases in the provinces of Spain and temperature values at
the province level. This conclusion is in good agreementwith a previous
study on the association between mean temperature and COVID-19
spread performed in 122 cities of China (Xie and Zhu, 2020). Although
the authors of this study found that mean temperature was positively
associated with newly confirmed cases when temperature was below
3°, this association was not observed for temperatures above 3°, which
is close to the range of mean temperature measured in Spain for the
period that we have investigated: 95% of the daily mean temperature
values observed ranged from 5° to 18°. In this regard, it is important
to note that the period under study is months ahead from the summer
season, where temperatures will be considerably higher. Future studies
may lead to different findings, but no extrapolation to warmer periods
should be done from current investigations.

In conclusion, further research would be needed to better elucidate
the role of several meteorological variables on the expansion of the
COVID-19 epidemic, for several reasons. Currently available data on
the epidemic is subject to a large degree of uncertainty. The number of
confirmed cases is globally underestimated, and comparisons across
countries, cities or regions are difficult to be determined due to differ-
ences in data collection procedures or health policies, among others.
Under these circumstances, every statistical analysis of COVID-19 data
needs to be interpreted with caution (Royal Statistical Society, 2020).
It is also important to remark that measuring the effect of weather-
related covariates on the virus transmission is highly complex. Indeed,
weather usually affects several aspects of human daily life such as com-
muting choices or leisure activities, among many others. Therefore, the
interaction betweenweather conditions and human behaviour can be a
confounder of the true relationship between environmental conditions
and virus propagation.
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